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Abstract

In number theory, the function ψ(x, y) counts the amount of y-friable integers not exceeding
x. A theorem of de Brujin and Alladi relates the asymptotic value of ψ to Dickman’s function ρ.
In this note, we use ρ to estimate the limit of the probability that a uniformly chosen permutation
of Sn contains only short cycles, a quantity akin to friable numbers for permutations. The main
tool is the Saddle Point Method.

1 Introduction

An integer n is called y-friable if its largest prime factor is not greater than y. Denote by ψ(x, y)
the number of y-friable integers not exceeding x. The question of evaluating this quantity is crucial
in numerous arithmetical problems, and the techniques employed to tackle it are instructive from
several points of view.

For instance, the following theorem, found in [3], is obtained from a standard, albeit careful,
execution of the Saddle Point Method.

Theorem 1.1. Let ρ be Dickman’s function. Uniformly for x ≥ y ≥ 2, define u = lnx
ln y . We have

ψ(x, y) = xρ(u) +O

(
m

ln y

)
.

The permutations of the symmetric group of n elements Sn can be decomposed uniquely into
cycles. This fact facilitates the interpretation of cycles as the prime factors of permutations. We
can define y-friable permutations as those in which all their factoring cycles have length at most y.

The problem we will solve is:

Problem 1.2. Let α = O
(

logn
n

)
. Let pn,α be the probability that uniformly random permutation

σ of Sn is αn-friable. Then,

pn,α = (1 + o(1))ψ

(
1

α

)
,

where ψ is Dickman’s function and o(1) depends on n.

Remark 1.3. As it will be seen later, the Saddle Point Method breaks when α is too large.
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As in the case of friable numbers, the main tool is the Saddle Point Method, which is used to
estimate integrals. Let us describe it briefly, sans technicalities.

Let U be a domain, and γ its boundary. Consider a nonconstant meromorphic function f :
C→ C with a pole w in U . To approximate the residue of f at w it suffices to calculate

∫
γ f(z)dz

roughly. Write
∫
γ f(z)dz =

∫
γ exp(I(z))dz for the appropriate function I. Suppose z0 is a critical

point of I, then it must be a saddle point of f , since otherwise exp(I(z)) would be constant, by
the Maximum/Minimum Modulus Principle. If we can suitably deform γ to pass through z0, then
f will have a maximum on γ at z0, and it will rapidly decrease away from it. Thus, it is the hope
that

∫
γ f(z)dz ∼ f(z0).

Acknowledgements. I would like to thank my advisor, Robert Hough, who recommended me
this problem, for pointing me in fruitful directions. Also, Appendix A of his paper [1] contains the
slight modification of the regular Saddle Point Method that we use in this write up.

2 Preliminaries

2.1 Notation

While most notation is standard to analysis, some parts may require clarification.
<(z) denotes the real part of the complex number z.
Big O and small o notation are employed; they are taken to depend on n as it grows. Since

α may ultimately depend on n as well, if a more refined analysis is required, α will appear in the
expressions, e.g. O(n3α4).

In some parts� and� are used. A� B means A = O(B), while A� B should be interpreted
as B = O(A).

Finally, abusing notation, αn might be used in place of bαnc whenever we need an integer,

depending on context. For example,
∑αn

k=1 k would mean
∑bαnc

k=1 k under this convention.

2.2 Cycle Generating Function

This discussion follows Chapter 4.7 of [4].
For any a = (a1, . . . , ak) ∈ Nk such that a1 + 2a2 + . . . + kak = k, let c(a) denote the number

of permutations σ of Sn that contain a1 cycles of length 1, a2 cycles of length 2, etc.
The generating function

φn(x) =
∑

a1+2a2+...+kak=k

c(a)xa11 x
a2
2 · · ·

is called the cycle index of the symmetric group Sn.
The following grand generating function, where x is a sequence,

C(x, t) =
∞∑
k=1

φk(x)
tk

k!

can be shown to have the closed form

C(x, t) = exp

∑
k≥1

xkt
k

k

 .
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2.3 Dickman’s Function

The following material is taken from Section 4, Chapter 5 of Part III of [3].
Dickman discovered the function bearing its name in 1930. It is continuous at u = 1, differen-

tiable for u > 1, satisfies the delay differential equation

uρ′(u) + ρ(u− 1) = 0, for u > 1,

and has the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. By making ρ(u) = 0 when u < 0, we can
extend ρ effectively to all of R.

We first introduce an auxiliary quantity.
For u > 1, let ξ = ξ(u) be the unique real, non-zero root of the equation

eξ = 1 + uξ, u > 0, u 6= 1.

Lemma 2.1. We can implicitly differentiate ξ with respect to u to obtain

ξ′(u) =
ξ

1 + u(ξ − 1)
.

Also, for u ≥ 3, ξ has the following expansion

ξ(u) = ln(u lnu) +O

(
ln2 u

lnu

)
This theorem of de Brujin and Alladi states the right order of ρ.

Theorem 2.2. Define I(s) as the function

I(s) =

∫ s

0

et − 1

t
dt, s ∈ C.

Let γ be the Euler-Mascheroni constant.
We have

ρ(u) =

√
ξ′(u)

2π
eγ−uξ+I(ξ)

{
1 +O

(
1

u

)}
.

3 Friable Permutations

3.1 Summary of the Solution

Computing pn,α amounts to counting the number of αn-friable permutations and dividing by n!. As
is common practice in combinatorics, we will find a generating function G(t) whose n-th coefficient
is pn,α. We will then recover the coefficients through Cauchy’s integral formula. The main, and
final, step is employing the Saddle Point Method to estimate the resulting integral.
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3.2 Setting up the Integral

Let x̄ be the sequence defined by making xj = 1 when j ≤ αn and xj = 0 otherwise. We observe
that the coefficient of tn in C(x̄, t) is actually pn,α, and we can isolate it through Cauchy’s integral
formula.

Define with foresight

F (t) =

αn∑
k=1

Rke2πikt

k
− 2πint.

If Γ is the circle with radius R centered at 0, we have

pn,α =
1

2πi

∫
Γ

C(x̄, z)

zn+1
dz

=

∫ 1/2

−1/2

exp
(∑αn

k=1
Rke2πikt

k − 2πint
)

Rn
dt

=

∫ 1/2

−1/2

exp(F (t))

Rn
dt.

We ignore the intersection of the circle and the ray <(z) ≤ 0, as it has measure zero.

3.3 The Saddle Point Method

3.3.1 Finding a Critical Point

To use the Saddle-Point Method, we first have to solve the stationary-phase equation F ′(0) = 0;
this is equivalent to finding an R that makes 0 a critical point of F .

When R = 1, zero is not a critical point of F ; thus, we can assume R 6= 1, and compute

F ′(0) = 2πi
Rαn+1 −R
R− 1

− 2πin.

Then, R has to satisfy
0 = Rαn+1 − (n+ 1)R+ n.

It is not hard to note this equation has a real solution R = R(α, n) = 1 + β such that β > 0 and
limn→∞ β = 0. We write β = Bn−1 + O(n−2), and compute the first order Taylor expansion at
n =∞ of the previous equation:

0 =
(
eαB −B − 1

)
+O(n−1).

We force B > 0 to be the unique positive solution to eαB = 1 +B.
We make the change of variables αB = ξ and α = 1/u. Translating the contents of Lemma 2.1,

we have

B =
1

α
log

(
1

α
log

1

α

)
+

1

α
O

(
log2(1/α)

log(1/α)

)
=

1

α
log

(
1

α
log

1

α

)
+O

(
1

α

)
.
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3.3.2 The Leading Coefficient

Define S = F (0). We need to estimate

pn,α =
exp(S)

Rn

∫ 1/2

−1/2
exp (F (t)− F (0)) dt

=
exp(S)

Rn

∫ 1/2

−1/2
exp

(
αn∑
k=1

Rk
(
e2iπkt − 1

)
k

− 2iπnt

)
dt.

In what follows, we will compute asymptotics for S, Rn, and the integral.
Since R = (1 +Bn−1 +O(n−2)), Rn = eB + o(1).

We claim S =
∑αn

k=1R
k/k = log(αn) + γ +

∫ αB
0

es−1
s ds+ o(1), where γ is the Euler-Mascheroni

constant.
Note Rk = (1 + β)k = exp(k log(1 + β)) = exp(kBn−1 +O(kn−2)). Hence,

αn∑
k=1

Rk − 1

k
=

αn∑
k=1

ekBn
−1 − 1

k
+

αn∑
k=1

ekBn
−1+O(kn−2) − ekBn−1

k
.

Observe that the left-hand side is S − log(αn)− γ + o(1).
On the right-hand side, the left summand is

αn∑
k=1

ekBn
−1 − 1

k
=

αn∑
k=1

1

αn

(ek(αn)−1
)αB − 1

k(αn)−1
.

This is
∫ 1

0
eαbs−1

s ds+ o(1), since it is a partial Riemann sum. By a change of variables,∫ 1

0

eαbs − 1

s
ds =

∫ αb

0

es − 1

s
ds.

The right summand is∣∣∣∣∣
αn∑
k=1

ekBn
−1+O(kn−2) − ekBn−1

k

∣∣∣∣∣ ≤
αn∑
k=1

ekBn
−1
∣∣∣eO(kn−2) − 1

∣∣∣
k

≤
αn∑
k=1

eαB
∣∣∣eO(n−1) − 1

∣∣∣
k

= eαB
∣∣∣eO(n−1) − 1

∣∣∣( αn∑
k=1

1

k

)
= o(1),

since it is easy to see that eO(n−1) − 1 is o((log n)−1).

3.3.3 Main Term of the Integral

For the integral, set A = α−1/9

α1/2n
and D = n−1/3, as they will be useful. Define

M =

∫ 1/2

−1/2
exp

(
1

2
F ′′(0)t2

)
dt,

M1 =

∫
|t|≤A

(
exp

(
F (t)− F (0)

)
− exp

(
1

2
F ′′(0)t2

))
dt,
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M2 =

∫
A≤|t|≤1/2

exp

(
1

2
F ′′(0)t2

)
dt,

M3 =

∫
A≤|t|≤D

exp (F (t)− F (0)) dt.

M4 =

∫
D≤|t|≤1/2

exp (F (t)− F (0)) dt.

We will show that M dominates all the other Mj , for j = 1, 2, 3, 4. This will help us conclude∫ 1/2

−1/2
exp (F (t)− F (0)) dt = M +M1 −M2 +M3 +M4 = (1 + o(1))M.

We first analyze M . It is a Gaussian integral, since

F ′′(0) = −4π2

(
αnRαn+2 − (αn+ 1)Rαn+1 +R

(R− 1)2

)
= −4π2

(
eαB(αB − 1) + 1

B2

)
(1 + o(1))2

= −4π2

(
α+ αB − 1

B

)
(1 + o(1))n2.

Recalling the dependence of B on α, note

α+ αB − 1

B
= (1 + o(1))α.

Thus, the standard deviation of the Gaussian integral is O(α−1/2n−1), and hence most of its
mass concentrates around 0 in a neighborhood of size α−1/2n−1. We have∫ 1/2

−1/2
exp

(
1

2
F ′′(0)t2

)
dt = (1 + o(1))

√
B(α+ αB − 1)−1

2π

1

n

= (1 + o(1))

√
α2B(α+ αB − 1)−1

2π

1

αn

= M.

3.3.4 Discarding Error Terms

We begin with M1.
By Taylor’s Theorem, we know for every 0 < t < A there is 0 < ξt < t such that

F (t)− F (0) =
1

2
F ′′(0)t2 +

1

6
F ′′′(ξt)t

3,

since the first derivative vanishes due to our choice of R.
Also, recalling our estimate for B, note that

|F ′′′(ξt)| =

∣∣∣∣∣−8π3i
αn∑
k=1

k2e2πikξRk

∣∣∣∣∣ ≤ 8π3
αn∑
k=1

k2Rk

= 8π3R(−((αn)2(R− 1)2 − 2αn(R− 1) +R+ 1)Rαn +R+ 1)

1−R3

=

(
2− 2α− 2αB − 2αB2 + α2B2 + α2B3

B3

)
n3(1 + o(1))

= α2n3(1 + o(1)).
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Thus,

|M1| =

∣∣∣∣∣
∫
|t|≤A

(
exp

(
1

2
F ′′(0)t2 +

1

6
F ′′′(ξt)t

3

)
− exp

(
1

2
F ′′(0)t2

))
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫
|t|≤A

exp

(
1

2
F ′′(0)t2

)[
exp

(
1

6
F ′′′(ξt)t

3

)
− 1

]
dt

∣∣∣∣∣
≤
[
exp

(
1

6
α2n3(1 + o(1))A3

)
− 1

] ∫
|t|≤A

exp

(
1

2
F ′′(0)t2

)
dt

=

[
1

6
α2n3(1 + o(1))A3 +O

(
α4n6A6

)] ∫
|t|≤A

exp

(
1

2
F ′′(0)t2

)
dt

= o(M).

This last equality is true because α2n3(1+o(1))A3 = (1+o(1))α1/6 = o(1), and
∫
|t|≤A exp

(
1
2F
′′(0)t2

)
dt

is (1 + o(1))M since the domain {|t| ≤ A} contains ∼ α−1/9 standard deviations of M and
α−1/9 →∞.

M2 is the most direct quantity to drop. By known theory of Gaussian integrals, a two-sided
tail of ` standard deviations away from the mean is O(e−`

2/2) times the whole integral. Thus,
M2 = o(M), as A is about α−1/9 standard deviations away and α−2/9 dominates log n.

For M3 and M4 we will use Lemma 12 of [2].

Lemma 3.1. For t ∈ [−1
2 ,

1
2 ], the sum <

(∑αn
k=1(Rk exp(2πikx)− 1)/k

)
is upper bounded by

−8
Rαn+1

αn(R− 1)
· t2

(R− 1)2 + 4π2t2
+

2R

αn(R− 1)
.

Remark 3.2. The previous lemma can be simplified when observing that

Rαn+1

αn(R− 1)
= (1 + o(1))

exp (αB)

αB
,

and also
2R

αn(R− 1)
= (1 + o(1))

2R

αB
= o(1).

Continuing, we look at M3. We have, for some constant C > 0,

M−1|M3| ≤M−1

∫
A≤|t|≤D

|exp (F (t)− F (0))| dt

= M−1

∫
A≤|t|≤D

exp

(
<

(
αn∑
k=1

(Rk exp(2πikx)− 1)/k

))
dt

≤M−1[D −A] exp

(
−8

Rαn+1

αn(R− 1)
· A2

(R− 1)2 + 4π2D2
+

2R

αn(R− 1)

)
≤ C(1 + o(1)) exp

(
−exp(αB)

αB
· α−1−2/9n−2

B2n−2 + 4π2n−2/3
+ o(1)− log(M)

)

≤ C(1 + o(1)) exp

(
−exp(αB)

αB
· α
−1−2/9n−2

8π2n−2/3
+ o(1)− log(M)

)
= o(1).
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Recall that M ∼ α−1/2n−1 and α� log n/n. The last line is true because, as n grows,

exp(αB)

αB
· α
−1−2/9n−2

8π2n−2/3
+ log(M)�

1
α log

(
1
α

)
log
(

1
α log

(
1
α

)) · 1
α1+2/9

n4/3
− log(

√
αn)

�
n2/3 1

α2/9

(log n)2 log
(

1
α log

(
1
α

)) − log(
√
αn)

→∞.

For M4, an analogous argument works, with some constants C1, C2,

M−1|M4| ≤M−1

∫
D≤|t|≤1/2

|exp (F (t)− F (0))| dt

≤ C1(1 + o(1)) exp

(
−exp(αB)

αB
· D

2

2C2
+ o(1)− log(M)

)
≤ C1(1 + o(1)) exp

(
−exp(αB)

αB
· 1

2C2n2/3
+ o(1)− log(M)

)
= o(1).

Again, the exponent of the last line satisfies

exp(αB)

αB
· 1

2C2n2/3
+ log(M)�

1
α log

(
1
α

)
log
(

1
α log

(
1
α

)) · 1

n2/3
− log(

√
αn)

� n1/3

(log n) log
(

1
α log

(
1
α

)) − log(
√
αn)

→∞.

4 Conclusion

We can now match the terms of pn,α with those of Dickman’s function ρ in Theorem 2.2. We will
be using the correspondence αB = ξ and α−1 = u from here on. First,

ξ′(u) =
ξ

1 + u(ξ − 1)
=

α2B

α+ αB − 1
.

After processing all the error terms, we end with the expression,

pn,α = (1 + o(1))
exp(S)

Rn
·M

= (1 + o(1)) exp

(
−B + log(αn) + γ +

∫ αB

0

es − 1

s
dx

)√
α2B

2π(α+ αB − 1)

1

αn

= (1 + o(1)) exp (γ −B + I(αB))

√
α2B

2π(α+ αB − 1)

= (1 + o(1)) exp (γ − uξ − I(ξ))

√
ξ′(u)

2π
= (1 + o(1))ρ(u)

= (1 + o(1)) · ρ
(

1

α

)
.
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